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1. Motivation

Computational Fluid Dynamics (CFD) has become an increasingly
popular tool for nuclear safety related thermo-hydraulic investigations.

There are several suitable CFD-codes available, both closed and open
source.

The benefits of an open source CFD-code are:

* Transparency
= Infinite customizability
= Lack of licensing fees
— Feasible cost structure for massively parallel computations
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2. What is OpenFOAM®?

“The OpenFOAM® (Open Field Operation and Manipulation) CFD
Toolbox is a free, open source CFD software package produced by a
commercial company, OpenCFD Ltd.”

Originated in Imperial College London in early 90’s, released as open
source in 2004.

Unstructured 3D Finite Volume Method (FVM) for partial differential
equation field problems.

A library of C++ modules that can be used create solvers, utilities and
models. Comes with number of pre-built applications.

Ope nVF OAM OpenFOAM® (www.openfoam.com) and OpenCFD® are registered trademarks of

OpenCFD Limited and this project has not been endorsed or approved by OpenCFD Ltd.


http://www.openfoam.com/
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2. What is OpenFOAM®?

Compared to most other open source CFD codes, the benefits of OpenFOAM®
are:

= A large, active and growing user base.
= Modern approach to mesh handling with unstructured and polyhedral meshes.

= Low level parallelization and an object oriented code structure that makes it fast
and easy to implement new models and solvers in the top level code.

Distinct drawbacks of OpenFOAM® are:
» Lack of comprehensive, public, formal documentation
= A very steep user learning curve.

= Many of the features represent the state-of-the-art, but often lack the polish to
directly apply them to practical engineering problems.

O e nVF OAM OpenFOAM® (www.openfoam.com) and OpenCFD® are registered trademarks of
p OpenCFD Limited and this project has not been endorsed or approved by OpenCFD Ltd.


http://www.openfoam.com/
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3. Validation plan

The work is focused on a few nuclear safety related applications at a
time.

= The first application: single and two-phase flow inside a PWR fuel
assembly.

The validation is based comparison of simulations to experimental data.
Systematic code verification is out of the scope of this project

» The OpenFOAM community with thousands of users is relied on to find the
relevant code errors.

The validation plan is a living document that evolves during the project
and code development.
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4. Single-phase near-wall-treatment validation

1. test case: Turbulent pipe flow
= Rep =45 000, 80 000 or 169 000
Solver: buoyantPimpleFoam (OpenFOAM® 1.7.x)
= Single-phase, heat transfer, compressible and incompressible

= NuFoam enhancements: Jayatilleke thermal wall function,
external temperature boundary condition, post processing utilities.

Tested models:
= Two RANS* turbulence models: standard k- and SST k-w

= Different momentum and thermal wall functions
= Different mesh wall resolutions: y* =1...250

All-in-all: Results were reported for 48 RANS* simulations

* Reynolds Averaged Navier-Stokes (RANS): Turbulent fluctuations are modelled and local
mean properties are solved.
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4. Single-phase near-wall-treatment validation

Pressure loss compared to Colebrook Heat transfer compared to the
correlation:; Gnielinski correlation (simulated friction):
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y* is dimensionless distance from wall to first cell centre of the computational mesh
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5. Conjugated heat transfer validation

Solver: chtMultiRegionFoam (OpenFOAM® 1.7.x)
= Allows multiple temperature coupled fluid and solid regions
= Coupling by special boundary conditions

1. test case: Turbulent pipe flow in a copper pipe
= Tested against:  buoyantPimpleFoam and
an analytical heat transfer coefficient.

= Results match: Relative pressure loss difference 10-°
Wall temperature difference 0.005 K

2. test case: Water pipe suspended in air
» Heat transfer: Water—Copper — Air
= Three simulations: Free convection at Rap = 10° :
Forced convection at Re, = 120 using | [IiEEE
two different channel widths. - =
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5. Conjugated heat transfer validation

Copper water pipe suspended in air
Free convection Forced convection
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5. Conjugated heat transfer validation

Example of results: External convection Nusselt number

Free convection, RaD = 100 000
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6. Two-phase solver development and validation

OpenFOAM 1.7 .x: Existing two-fluid solvers: bubbleFoam and twoPhaseEulerFoam

twoPhaseEulerFoam was selected as starting point:
= More general and provides all the functionality the bubbleFoam does.
= Two incompressible phases with constant material properties
= k-¢ turbulence model for the continuous phase
*= No interfacial models for bubbles
= No heat transfer

To implement enhancements, a new solver twoPhaseNuFoam v0.1 was created:

= Based on the twoPhaseEulerFoam
= Coupling for bubble interfacial forces
= Bubble induced turbulence models
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6. Two-phase solver development and validation

New bubbleModel library for bubble interfacial force models was created. It
provides:

= Local bubble properties: Reynolds number, aspect ratioetc.
= A selection of user selectable sub models:

Drag, C4 Virtual Mass, C,, Bubble aspect ratio

+ Tomiyama (2002) + Lamb (1879) + Vakrushev & Effremov (1970)

+ Tomiyama (1995) + ConstantC,,, « Constant

+ Schiller-Nauman (1935) ) .

. ConstantC, Wall lubrication force Turbulent dispersion
i + Frank (2004) + Burns (2004)

Drag Swarm correction + Generalized Tomiyama (2003}  + Bertodano (RPI) (1992)

*+ Tomiyama (1995) + Antal (1991) + Gosman (1992)

*  none « PMNone « None

Lift, C,

+ Tomiyama (2002)
+ ConstantC,
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6. Two-phase solver development and validation

The first test cases are vertical bubbly flows: Hosokawa & Tomiyama (2009)
FZD Rossendorf MT-Loop 074

Example of results: Hosokawa & Tomiyama (2009) Case 3:
Different bubble induced turbulence and wall lubrication force models:
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6. Two-phase solver development and validation

Velocities and volume fraction behave qualitatively correctly.
Different interfacial models affect the flow as expected.
Problematic turbulence modelling:

»= Doesn’t match single-phase results at the dilute limit!

» Predicted turbulence kinetic energy is significantly lower than
experimental results in Hosokawa & Tomiyama (2009) test

case.

Planned and on-going development:
= Turbulence model overhaul
= Heat transfer

= VVariable material properties, compressibility
» Boiling and condensation



/. Simulation of the

-junction Flow

« A Dblind benchmark exercise was arranged by OECD/NEA in 2010 to
simulate turbulent mixing of warm and cold flows in a T-junction

« Transient information of the mixing is important, because heat fluctuations
create stresses on the ducts, which may eventually lead to cracks and
leaks.

Instantaneous temperature distributions from detached-eddy simulation.

Aalto University
School of Science
and Technology

T-junction benchmark
10/3/2011



/. Simulation of the T-junction Flow

 Three common turbulence modelling approaches were applied in the
work
— Large-eddy simulation (LES)
» Large-scale turbulence is simulated time-accurately and subgrid-scale effects are
modelled
« Dynamic Smagorinsky turbulence model applied (Piomelli and Liu)

— Reynolds-Averaged Navier-Stokes simulation (RANS)

» Turbulence effects are completely modelled, and only time-averaged solution is
solved in the simulation

» SST k-omega turbulence model

— Detached-eddy simulation (DES)

» Affordable version of LES. The flow is solved like RANS near surfaces, but like LES
elsewhere.

« Spalart-Allmaras turbulence model (delayed version)

School of Science

Aalto University T-junction benchmark
10/3/2011
and Technology



/. Simulation of the T-junction Flow

2
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« Verdict of the results et < Simcision
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Large-eddy simulation, fine grid

- LES gave satisfactory results in the
mixing flow, but finer grid would be
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- DES gave improved flow distributions
transient heat fluctuations near
surfaces. The temperature error is still
over 5% of total range in places. 0 — = : - -

— RANS solution was stable and transient
fluctuations were not apparent. The

flow distributions developed into Time-averaged velocity field at a distance of
incorrect state. 3.6 D from the junction on a vertical line
Aalto University T-junction benchmark
A School of Science 10/3/2011
and Technology
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Summary: single-phase

Excellent results in the laminar horizontal cylinder test case.
= \/alidation of the basic flow and heat transfer solutions.

Validation of the RANS turbulence model near wall treatment:
= Satisfactory, but not perfect.
* The k-€ model gave more accurate results on coarse meshes.
» SST k-w model gave reasonably good results on all the meshes.

Conjugated heat transfer:
* Flow solution matched the validated single-region results
= Heat conduction in the pipe wall matched analytical results.
= Confirmed to work with simultaneous compressible an incompressible
regions.

OECD/NEA T-junction:

= In the blind exercise our LES results ranked 5/29 in velocity and 21/29
in surface temperature comparisons.
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Summary: two-phase

The existing OpenFOAM® two-fluid solvers lack important sub
models for bubbly flows.

A new solver was created to enhance two-phase capabilities
= Qualitatively the results behave as expected
= Turbulence model produces incorrect results
» The solver still requires significant development for nuclear safety
applications.

Since the end of the two-phase portion of this project, weaknesses in the
two-phase turbulence modelling that affect the results have been identified
and corrected in a VTT internal development version of the solver, and
partially in the official 1.7.x release.
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