ENERGY, ENTROPY, EXERGY AND SPACE HEATING SYSTEMS

Masanori SHUKUYA

Laboratory of Building Environment

Musashi Institute of Technology

Tokyo, Japan

Energy is often claimed **to be consumed** for heating, cooling, and lighting building interiors.

?

The first law of thermodynamics states that the total amount of **energy is conserved**.

It is necessary to articulate what is consumed by building environmental control systems.

We discuss the following.

- What is consumed by a hypothetical space heating system?
 - **Exergy**, not energy
- How does the system work?
 - Exergy-entropy process

Key Concepts

Entropy:

A measure that indicates the **dispersion** of energy and matter

Exergy:

A measure of **dispersion potential** of energy and
matter

A Working System

- 1. Feed on exergy,
- 2. Consume exergy,
- 3. Generate entropy,
- 4. Dispose of the generated entropy.

A Space Heating System

Exergy-Entropy Process

$$e_{LNG} + e_{LNG}^{'} - \sum_{k=1}^{8} s_{gk} \cdot T_o = 0$$

$$S_{dump} = S_{LNG} + S_{LNG} + \sum_{k=1}^{8} S_{gk}$$

A case study

Exergy Cosumption

CONCLUSIONS

- 1. Exergy and entropy balance equations are developed for a hypothetical space heating system. They show explicitly the mechanism of the system.
- 2. The process of the system is to feed on exergy, to consume exergy while at the same time to generate entropy, and to discard the generated entropy.
- 3. Numerical examples show that it is vitally important to reduce the heating exergy load, which is 6 to 7 % of the primary supply of chemical exergy to the whole system.