

Abstract— Failure of IT systems often causes a major loss of

service. Thus their dependability has become an important issue.
Recent facets of the dependability of IT systems, such as
reliability, availability, safety, security, confidentiality, integrity,
and maintainability do not address the needs of IT systems
because they do not include the notion of a degraded service as
an explicit requirement. The concept termed survivability is a
precise notion of the forms of services that are acceptable in a
system, the circumstances under which each form is most useful,
and the fraction of time that is acceptable in degraded services.
In this paper survivability is discussed as a necessary new facet of
dependability. The contribution of this paper is to give system
architects the latest knowledge on survivability in order to help
them develop survivable IT systems. Definitions of dependability
and survivability are presented and discussed. In addition, the
key properties and survivability requirements, and the role of
fault tolerance in survivable systems are discussed. Furthermore,
survivability implementation techniques and examples of
survivability architectures are introduced and discussed. Finally,
software architecture design and analyzing methods and
frameworks relevant to survivability are discussed.

Index Terms—Dependability, reliability, security, survivability

I. INTRODUCTION
ODERN society faces a substantial, and generally
acknowledged, risk of IT systems failure or compromise

with potentially serious consequences. Sectors such as energy,
financial services, telecommunications, healthcare, and
defense are potential application areas of such systems [4],
[5], [6], [8], [12]. Despite the best efforts of security
professionals, no amount of system hardening can assure that
a system that is connected to an unbounded network, such as
the Internet, will not be vulnerable to attack. From point of
view of a system architect’s practical work, it is important to
know what survivability really means and how it can be
applied to IT systems. Survivability, and the survivability
requirements, of an IT system must be taken into account at
the system architecture design phase.
 Survivability in IT systems is a relatively new research
area. The precise definition of survivability is still being

Manuscript received October 4, 2004. This research work was conducted in
the Moose project under the ITEA cluster projects of the EUREKA network,
and financially supported by Tekes (the National Technology Agency of
Finland).

P. Tarvainen is with VTT Electronics, VTT, the Technical Research
Centre of Finland, P.O. Box 1100, FIN-90571 Oulu, Finland,
pentti.tarvainen@vtt.fi.

debated, with a number of definitions proposed. Most
commonly, survivability is defined as “the ability of a system
to fulfill its mission, in a timely manner, in the presence of
attacks, failures or accident” [8], [9], [10], [11], [18], [19].
The term system is used in the broadest possible sense,
including networks and large-scale systems of systems. The
term mission refers to a set of abstract requirements or goals.

Survivability is a necessary new branch of dependability
[1], [2], [3], [5], [8], [9], [10], [11], [18]. It addresses explicit
requirements for restricted modes of operation that preserve
critical essential services in adverse operational environments.
A survivable system is one that satisfies its survivability
specification of essential services and adverse environments.
Essential services are defined as the functions of the system
that must be maintained when the environment is hostile or
failures or accidents are detected that threaten the system. The
discipline of survivability can help ensure that IT systems can
deliver essential services and maintain such essential
properties as performance, security, reliability, availability and
modifiability despite the presence of intrusions. Unlike the
traditional security measures that require central control or
administration, survivability is intended to address unbounded
network environments.

Survivability requirements can vary substantially,
depending on the scope of the system, the criticality and the
consequences of failure and interruption of service. The
definition and analysis of survivability requirements is a
critical first step in achieving system survivability [8].
Survivability must address not only software function
requirements but also requirements for software usage,
development, operation and evolution.

Survivability architectures offer an approach to tolerating
faults in which the continued service element of fault
tolerance differs from normal service. By introducing this type
of fault tolerance, progress can be made towards meeting the
survivability goals of IT systems.

The rest of the paper is organized as follows: definitions of
dependability and survivability are presented and discussed in
Section II,. In Section III key properties and survivability
requirements, and the role of fault tolerance in survivable
systems are discussed. Techniques for implementing
survivability are discussed in Section IV and examples of
survivability architectures are introduced. Software
architecture design and analyzing methods and frameworks
that take survivability into account are introduced in Section
V, and, Section VI contains the concluding remarks.

Survey of the Survivability of IT Systems
Pentti Tarvainen

VTT Technical Research Centre of Finland
P.O. Box 1100, FIN-90571 Oulu, Finland

email: pentti.tarvainen@vtt.fi

M

II. DEFINITIONS RELATED TO SURVIVABILITY
A definition of dependability and different definitions of

survivability based on recent research work are discussed in
this section; unofficial and common definitions of
survivability are also introduced and discussed.

A. Definition of Dependability
Dependability is the system property that integrates such

attributes as reliability, availability, safety, confidentiality,
integrity, maintainability and survivability [32]. The
dependability of a computing system is its ability to deliver a
service that can justifiably be trusted. The service delivered by
a system is the behavior of a system as it is perceived by its
user(s). A user is another system, physical or human, that
interacts with the former at the service interface. The function
of a system is what the system is intended to do, and is
described by the functional specification. The correct service
is delivered when the service implements the system function.

B. Definitions of Survivability
Software quality is depicted in IEEE 1061 [30] and

represents the degree to which the software possesses a
desired combination of quality attributes. Another standard,
ISO/IEC 9126-1 [31], defines the software quality model for
external and internal quality. Based on this model, there are
six categories of characteristics - functionality, reliability,
usability, efficiency, maintainability and portability - which
are further divided into sub-characteristics. Either of these
standards does not define survivability.

A preliminary scoping of the general survivability problem
was suggested by a 1993 report, “Survivable Computer-
Communication Systems: The Problem and Working Group
Recommendations” [25], written for the U.S. Army Research
Laboratory (ARL). The report outlines a comprehensive
multifunctional set of realistic computer-communication
survivability requirements and makes related
recommendations applicable to U.S. Army and defense
systems [22].

The precise definition of survivability is still being debated,
with a number of definitions proposed as described in Table I.
The definitions in the table are listed in chronological order,
based on the year the definition was published. Also the

respective references are also denoted in the table. Based on
Table I, survivability in respect of IT systems is a relatively
new research area and the content of the definition of
survivability depends on the domain.

In the context of software engineering, Deutsch [2] has
offered the first definition shown in the table. This definition
is not sufficient for all needs [18]. If it were applied to IT
systems in this form, the user of the system could not be sure
which functions had been selected as “essential functions” nor
under what circumstances (i.e., after what damage) these
functions would be provided.

The Institute for Telecommunications Services, a part of the
U.S. Department of Commerce, has created an extensive
glossary of telecommunications terms in Federal Standard
1037C [53]. The glossary contains a definition of survivability
for telecommunications systems (the second definition in
Table I). This definition seeks a framework for defining a
service after some form of damage and relates closely to the
goal of defining survivability for IT systems [1], [18].
Furthermore, this definition includes the notion of a degraded
or different service and requires that it be defined.
 Specifically on IT systems survivability, Ellison et al. [3]
introduce the third definition of survivability shown in Table
I. While this definition is a good beginning, it does not have
the precision needed to permit a clear determination of
whether a given system should be considered to be survivable
[1], [18]. The first problem is that much is implied by the
phrases “essential services”, “attacks and failures” and “timely
manner”. If nothing further is defined, it is not possible for the
architect of a system to determine whether a specific design is
adequate to meet the needs of the user community. More
importantly, if a phrase such as “essential service” is not
precisely defined, it might be the case for any specific system
that the determination of what constitutes an essential service
is left to the system’s developers rather than being defined
carefully by application experts. A second problem with a
definition of this form is that it provides no testable criterion
for the term being defined. Essential services are defined as
the functions of the system that must be maintained when the
environment is hostile, or failures or accidents that threaten
the system are detected.

Most commonly [8], [9], [10], [11], [18], [19], survivability

TABLE I
DEFINITIONS OF SURVIVABILITY

 Definition Year Domain Ref.
1. Survivability is the degree to which essential functions are still available even though

some part of the system is down.
1988 IT systems in general [2]

2. Survivability is a property of a system, subsystem, equipment, process or procedure
that provides a defined degree of assurance that the named entity will continue to
function during and after a natural or man-made disturbance. Note: Survivability must
be qualified by specifying the range of conditions over which the entity will survive the
minimum acceptable level or post-disturbance functionality and the maximum
acceptable outage duration.

1996 Telecommunication Systems [54]

3. Survivability is the ability of a network computing system to provide essential services
in the presence of attacks and failures and recover full services in a timely manner.

1997 Network Computing Systems [3]

4. Survivability is the capability of a system to fulfill its mission, in a timely manner, in
the presence of attacks, failures or accidents.

1999

Critical and Defense Systems [8],[9],
[10],[11],
[18],[19]

5. Survivability is the ability [of a system] to continue to provide service, possibly
degraded or different, in a given operating environment when various events cause
major damage to the system or its operating environment.

2000 Critical and Defense Systems [1], [20]

is defined as the fourth definition in Table I. The term system,
consisting of software and hardware, is used in the broadest
possible sense, including networks and large-scale systems of
systems. The term mission refers to a set of very high-level
(i.e., abstract) requirements or goals. Missions are not limited
to military settings since any successful organization or
project must have a vision of its objectives, whether expressed
implicitly or as an official mission statement. The terms
attack, failure, and accident are meant to include all
potentially damaging events, but these terms do not partition
these events into mutually exclusive or even distinguishable
sets. Attacks are potentially damaging events orchestrated by
an intelligent adversary. Attacks include intrusions, probes
and denials of service. Failures are included with accidents as
part of survivability. Failures are potentially damaging events
caused by deficiencies in the system or in an external element
on which the system depends. Failures may be due to software
design errors, hardware degradation, human errors or
corrupted data. Accidents describe a broad range of randomly
occurring and potentially damaging events, such as natural
disasters. It is important to recognize that it is the mission
fulfillment that must survive, not any particular subsystem or
system component.

The fifth definition of survivability [1], [20] in Table I
suggests a number of key points regarding the notion of
survivability:

Survivability is a system property, relating the level of
service provided to the level of damage present in the system
and operating environment [7],

A system must be capable of providing different levels of
service. In a system free of damage, the level of service should
equate with full functionality. Different levels of service will
correspond to varying subsets of functionality, where some
functions that a system performs are obviously more critical
than others [1], [18], and

The events that cause major damage can range from failures
to attacks to accidents. It is often difficult to immediately
determine the cause of the damage, e.g. whether the damage is
the result of an intentional security attack or a random failure
[3]. More important is the effect of the event in terms of
damage to the system and operating environment — the
amount of damage is central to the level of service that a
survivable system can and should provide [7].

III. REQUIREMENTS AND KEY PROPERTIES OF SURVIVABLE
SYSTEMS

In this section the key properties and requirements, and the
role of fault tolerance in survivable systems are defined and
discussed. The key properties of survivable systems are as
follows [8]:

Firstly, central to the delivery of essential services is the
ability of a system to maintain essential properties, i.e.
specified levels of integrity, confidentiality, performance and
other quality attributes. Thus it is important to define the
minimum levels of quality attributes that must be associated
with essential services.

Secondly, quality attributes are so important that definitions

of survivability are often expressed in terms of maintaining a
balance among multiple quality attributes, such as
performance, security, reliability, availability, modifiability
and affordability. Quality attributes represent broad categories
of related requirements, so a quality attribute may contain
other quality attributes. For example, the security attribute
traditionally includes the three attributes of confidentiality,
integrity and availability.

Thirdly, the ability to deliver essential services and
maintain the associated essential properties must be sustained,
even if a significant portion of the system is incapacitated.
This ability should not be dependent upon the survival of a
specific information resource, computation or communication
link.

Fourthly, key to the concept of survivability is identifying
the essential services, and the essential properties that support
them, within an operational system. There are typically many
services that can be temporarily suspended when a system is
dealing with an attack or other extraordinary environmental
condition. Such a suspension can help isolate areas affected by
an intrusion and free system resources to deal with the
intrusion’s effects. The overall function of a system should
adapt to the situation to preserve essential services. If an
essential service is lost, it can be replaced by another service
that supports mission fulfillment in a different but equivalent
way. However, the identification and protection of essential
services is an important part of a practical approach to
building and analyzing survivable systems.

The survivability requirements of survivable systems can
vary substantially, depending on the scope of the system, and
the criticality and consequences of failure and interruption of
service [8]. The definition and analysis of survivability
requirements is a critical first step in achieving system
survivability. Survivability must address not only the
requirements for software functionality but also the
requirements for software usage, development, operation and
evolution. Five types of requirements definitions are relevant
to survivable systems [8]: (1) System/Survivability
Requirements, (2) Usage/Intrusion Requirements, (3)
Development Requirements, (4) Operations Requirements and
(5) Evolution Requirements.

Fault tolerance enables systems to continue to provide
service in spite of the presence of faults. Fault tolerance
consists of four phases: (1) error detection, (2) damage
assessment, (3) state restoration and (4) continued service.
Survivability is a dependability property; it is not synonymous
with fault tolerance [1]. Fault tolerance is a mechanism that
can be used to achieve certain dependability properties. In
terms of dependability, it makes sense to refer to a system as
reliable, available, secure, safe and survivable, or some
combination, using the appropriate official definition(s).
Describing a system as fault tolerant is really a statement
about the system’s design, not its dependability. While fault
tolerance is a mechanism by which some facets of
dependability might be achieved, it is not the only mechanism.
Other techniques, such as fault avoidance, can also be used. In
similar ways, fault elimination and fault forecasting can be
used as mechanisms to improve a system’s dependability.

IV. IMPLEMENTATION TECHNIQUES FOR SURVIVABILITY
This section discusses implementation techniques related to

the survivability of IT systems. In addition, examples of
survivability architectures of IT systems are introduced and
discussed

A. Survivability and Security
It is important to recognize the relationship between

survivability and security. An application may employ
security mechanisms, such as passwords and encryption, and
may still be very fragile [17]. For instance, it may fail when a
server or a network link dies. On the other hand, a survivable
application must be able to survive some malicious attacks.
Therefore, survivability must involve security. There are two
aspects of survivability [17]: (1) survival by protection and (2)
survival by adaptation.

Security mechanisms like access control and encryption
attempt to ensure survivability by protecting applications from
harmful, accidental or malicious changes in the environment
[17]. The application could also survive by adapting itself to
the changing conditions. These two aspects may not be
mutually exclusive; as part of survival by adaptation, an
application may utilize security mechanisms. For example, it
may start using access control or increase the key length when
it perceives the threat of an intrusion. Most current
applications fail rather than adapt when QoS assumptions turn
out to be too optimistic. The problem is made worse by the
fact that survivability mechanisms are complicated, have little
to do with an application’s functionality, and developers only
have limited tool support for incorporating them.

Furthermore, based on [17], the general notion of survival
by adaptation results from years of experience in designing,
implementing and deploying wide-area distributed systems,
and is based on the ARMD (Adaptive, Redundant, Monitored,
and Diversified) principles. These principles are not
independent, and they need to be organized in a meaningful
way to lead to survivability. For instance, being adaptive
generally means that the adaptation is driven by some kind of
monitoring. However, monitoring could be used without any
kind of adaptation at all. Similarly, redundancy and diversity
could very well be used without any adaptation, but in the
context of adaptation they often define or broaden the scope
of adaptation. Not all adaptive behaviors lead to survivability.
For instance, shutting an application down on an exception
indicating a change in the environment does not add anything
to the survivability of the application. In fact, such an
adaptation facilitates a whole class of denial of service attacks,
whereas survivability is about continuing to provide useful
service despite environmental changes.

Survival by adaptation typically involves monitoring and
changing the Quality of Service (QoS) available to
applications [17]. An application’s design always makes some
assumptions about the QoS provided by the environment for
bandwidth, reliability, security services, etc. When these
assumptions are violated, the application should try to adapt
rather than fail. Most current applications, however, fail rather
than adapt when QoS assumptions turn out to be too
optimistic. The problem is made worse by the fact that

survivability mechanisms are complicated, have little to do
with an application’s functionality, and developers only have
limited tool support for incorporating them.

One important technique for improving system
dependability and survivability is to provide mechanisms for a
system to adapt at run time in order to accommodate varying
resources, system errors and changing requirements [52]. For
such self-repairing systems, one of the difficult problems is
determining when a change is needed, and knowing what kind
of adaptation is required. Based on [52], the challenge is to
engineer things so that the system adapts appropriately at run
time. There are two problems with this [52]. First, information
must be got out of the running system. This can be done by
employing low-level monitoring mechanisms that cover
various aspects of the executing system. The second problem
is to translate architectural repairs into actual system changes.
This can be solved by writing table-driven translators that can
interpret architectural repair operators in terms of the lower
level system modifications.

B. Survivability Architectures
Survivability architecture is a system architecture that is

designed specifically to deal with certain non-local faults [50].
A significant difficulty arises when the various concepts
involved in survivability architectures have to be evaluated
because experimentation with real systems is precluded. One
approach to dealing with this problem is to use operational
models that can be built and studied in the laboratory using a
developed experimentation system [50].

1) Survivability Architecture: Block, Evade, React (SABER).
Paper [33] proposes a survivability architecture called
SABER. SABER blocks, evades and reacts to a variety of
attacks by using several security and survivability mechanisms
in an automated and coordinated fashion. SABER integrates
several different technologies in an attempt to provide a
unified framework for responding to the wide range of attacks
malicious insiders and outsiders can launch. Most commercial
responses to the diverse array of vulnerabilities have been to
apply several discrete solutions [33]: (1) utilization of
network-based firewalls [34], [35], (2) deployment of
network-based and host-based intrusion detection systems
[36], [42] and (3) manual installation and deployment of
patches [37], [38].

At present, SABER is in the prototyping stages, with
several interesting open research topics. It currently makes use
of the following reaction and protection mechanisms [33]: (1)
a network Denial-of-Service (DoS) resistant and Secure
Overlay Services (SOS) architecture [39], (2) Manuscript
intrusion and anomaly detection tools, [43], [44], placed
within service contexts to detect malicious activity as well as
stealthy “scans and probes”, (3) a process migration system
[40] that can be used to move a service to a new location that
is not (currently) targeted by an attacker, (4) an automated
software-patching system [41] that dynamically fixes certain
classes of software-based attacks, such as buffer overflows,
and (5) a high-level coordination and control infrastructure to
correlate and coordinate the information and control flow.

2) Intrusion Tolerant Distributed Object System (ITDOS):
Intrusion Tolerant Distributed Object System (ITDOS)

architecture [47] discusses some of the challenging technical
issues related to intrusion tolerance in heterogeneous
middleware systems. The intrusion tolerant systems provide
integrity and availability services in the face of successful
attacks from an adversary.

Middleware is one area in which a system can provide
intrusion tolerance [47]. Middleware is a very useful category
of software that removes much of the tedium of distributed
systems programming and shields programmers from having
to deal with the numerous kinds of heterogeneity inherent in a
distributed system [48]. Distributed object middleware is
considered the most general kind of middleware, and CORBA
[49] is a widely adopted standard for distributed object
middleware. Middleware provides an ideal platform for
intrusion tolerance extensions because it allows a variety of
applications to be built that can transparently take advantage
of the intrusion tolerance properties of the middleware,
eliminating the need for custom solutions for each application
[47].

3) Middleware Architecture for Secure and Survivable
Mobile C4I Systems: An overview of a middleware-based
mobile C4I (Command, Control, Communications,
Computers, & Intelligence) architecture is discussed in [51].
The architecture is an outgrowth of work on a mobile
distributed operating system that attempts to deal with various
shortcomings in the Mobile Internet Protocol (Mobile IP) for
military use. The architecture provides a foundation for
balanced treatment of the complex, and frequently conflicting,
dependability requirements (i.e. security, survivability, etc.) of
military tactical systems.

The survivability architecture presented in [51] is
controversial in that the Session Layer performs the primary
communications function of a mobile “hand-off”, instead of
relying exclusively on the Network Layer to perform this
function. This approach is defended on the basis that where
tactical survivability is paramount, a mobile “hand-off” must
be carefully controlled by the Session Layer, even if not
specifically performed by that layer. The popular private
sector approaches (e.g. Mobile IP) attempt to provide a
“virtually stationary” environment by use of address
mappings, which, except for performance impact, completely

hide motion effects in the Network Layer. Such mobile
networking approaches are unsuitable for military mobile C4I
use, unless they are modified or designed to carefully
coordinate their resource-management facilities with the
survivability mechanisms of the Session Layer [51]. The
mobile C4I architecture is a part of an evolving paradigm for
C4I survivability called the Plan-Based Survivability, which
seems to be able to solve many open problems with current
survivability technology, and which has already been partly
demonstrated by a working prototype. In effect, Plan-Based
Survivability is a “superstructure” for unifying a diverse
hierarchy of C4I defenses, both physical and informational.

C. Summary
Table II summarizes the features of the survivable

architectures mentioned above. As a conclusion, the maturity
of the architectures is insufficient for practical utilization in a
system architect’s work, but they will help to understand and
solve the problem of survivable systems. The technical
approaches of the architectures heavily depend on the system
domain.

V. DESIGN OF SURVIVABILITY
In this section the available design and analysis methods

and models, as well as frameworks relevant for the
survivability of IT systems, are introduced and discussed.

A. Architecture Tradeoff Analysis Method (ATAM)
Paper [8] outlines an approach that addresses how to

evaluate the ability of a system to deliver essential functions
in an environment that includes intrusion scenarios. The
general approach to survivability and security is consistent
with the ATAM [14]. ATAM is a method for evaluating
architecture-level designs that consider such multiple quality
attributes as modifiability, performance, reliability and
security to gain insight as to whether the fully fleshed out
incarnation of the architecture will meet its requirements [14].
The method identifies tradeoff points between these attributes,
facilitates communication between stakeholders (such as user,
developer, customer, maintainer) from the perspective of each
attribute, clarifies and refines the requirements, and provides a

TABLE II

FEATURES OF SURVIVABILITY ARCHITECTURES
Feature SABER ITDOS C4I

Security
Mechanism

Integrates several security and
survivability mechanisms

Symmetric Encryption Session Keys “Plan-Based Survivability”, Mobile IP and
Ad Hoc network protocols for military use

Reaction/Protection
Mechanism

Process Migration System,
Network Denial-of-Service (DoS), Secure
Overlay Services (SOS),
An automated software-patching system

Distributed Object Middleware,
CORBA

“Plan-Based Survivability”

Intrusion Detection Network- and host-based intrusion
detection,
Anomaly-, registry- and file-based
detection,
Surveillance detection

Fault Tolerant Multicast Protocol +
CORBA

“Plan-Based Survivability”

Domain Network Systems Heterogeneous
Distributed Middleware Systems

Mobile Military Tactical Systems

Maturity Prototype Prototype Prototype
Publishing Year 2003 2002 1999
Reference [33] [47] [51]

framework for an ongoing, concurrent process of system
design and analysis.

B. The Survivable Network Analysis Method (SNA)
A four-step SNA method [23] has been developed for

analyzing survivability in distributed systems. SNA is a
practical engineering process that enables systematic
assessment of the survivability properties of proposed and
existing systems, and modifications to existing systems. The
analysis can be carried out at the lifecycle, requirements or
architecture level. Based on [23], although the SNA method is
developed for use with large-scale distributed-network
systems, it is equally applicable to other architectures,
including host-based and real-time systems. SNA’s scenario-
based approach is a generalization of the operation sequence
and usage scenario methods.

C. The Willow Survivability Architecture
 The Willow Architecture [13] is designed to enhance the
survivability of IT systems and is a comprehensive approach
to survivability in distributed applications. Based on [13],
survivability is achieved in a deployed system using a unique
combination of (1) fault avoidance by disabling vulnerable
network elements intentionally when a threat is detected or
predicted, (2) fault elimination by replacing system software
elements when faults are discovered, and (3) fault tolerance by
reconfiguring the system if non-maskable damage occurs.

D. Open Implementation Toolkit for Building Survivable
Applications (QuO)
In [17] Pal, Loyall, Schertz and Zinky consider two aspects

of survivability - namely, survival by adaptation and survival
by protection. They show how the Quality Objects (QuO)
distributed adaptive middleware framework enables the
introduction of these aspects of survivability in a flexible and
systematic manner. Furthermore, they also describe a toolkit
for developing adaptive applications and demonstrate how
more survivable applications can be built using the toolkit.

E. A Survivability Framework for Wireless Access
Networks
Based on [21], a Survivability Framework for Wireless

Access Networks consists of four layers, with survivability
strategies possible in each layer. The four layers are termed
access, access link level, transport and intelligent. The logical
layers are independent of the physical implementation of the
network. Each of the four layers is characterized by network
functions, network components and communication links.
This framework includes metrics for quantifying network
survivability, possible survivability strategies, and restoration
techniques for each layer.

F. An Architectural Framework and Algorithms for
Engineering Dynamic Real-Time Distributed Systems
In [24] Ravindran presents a resource management

architecture for engineering dynamic real-time, military,
computer-based, Command and Control (C2) systems using
commercial off-the-self technologies. In the proposed
architecture a real-time system application is developed in a
general-purpose programming language and system
description language is used to specify the architectural-level
description of the system. An abstract model that is
constructed from the language specification is dynamically
augmented by the System Description Language Runtime
System to produce a dynamic Intermediate Representation
(IR). The dynamic IR characterizes the state of the system and
is used by a recourse management element to deliver the
desired application QoS. The middleware techniques achieve
the timeliness and survivability requirements through runtime
monitoring and failure detection, diagnosis and dynamic
recourse allocation.

G. Easel Modeling and Simulation Language
Easel [15] is a modeling and simulation programming

language primarily intended for the research, analysis and
depiction of unbounded systems, survivable architectures and
emergent algorithms in applications, including Internet
security, ad hoc communication networks, electric power and
cooperation among autonomous vehicles. Easel is a notation

TABLE III

FEATURES OF THE SURVIVABILITY METHODS, MODELS, AND FRAMEWORKS
Method Type of Method Survivability Approach Domain Maturity Level Ref.

ATAM Design and Analysis
Method

Intrusion Scenarios, Quality
attributes

Not limited High, widely used [8], [14]

SNA Design and Analysis
Method

Scenarios Large-Scale Distributed-
Network Systems

High, based on
ATAM

[23]

Willow Modeling tool Fault Avoidance, Fault Elimination,
Fault Tolerance

Critical Distributed
Applications

Medium [13]

QuO Modeling tool Quality Objects, Adaptation,
Protection

Middleware Applications Medium [17]

Survivability
Framework for
WANs

Modeling tool Metrics, Restoration Techniques Wireless Access Networks Low [21]

Architectural
Framework

Modeling tool System Description Language,
Runtime Monitoring, Failure
Detection, Dynamic Recourse
Allocation

Military C2 Systems High [24]

Easel Modeling and
Simulation Language

Discrete Event Simulations Models Unbounded Systems,
Ad Hoc Networks

Medium [15]

for describing abstract models of anything, a translator run-
time system for running discrete event simulations from those
models. An example of the use of Easel in network
survivability analysis is presented in [16].

H. Summary
Table III summarizes the features of the survivability

methods, models and frameworks described above. As a
conclusion, the survivability approaches vary depending on
the system domain. From the point of view of the system
architect’s practical work, there is a remarkable lack of
suitable and mature methods. Only two (ATAM and SNA)
design and analysis methods are available. The rest of the
methods are modeling or simulation tools.

VI. CONCLUSION
Survivability is a new branch of dependability that

addresses the explicit requirements for restricted modes of
operation that preserve essential services in adverse
operational environments. A survivable system is one that
satisfies its survivability specification of essential services and
adverse environments. In addition, survivability must address
not only the requirements for software functionality but also
the requirements for software usage, development, operation
and evolution. Furthermore, survivability is a dependability
property; it is not synonymous with fault tolerance. Fault
tolerance is a mechanism that can be used to achieve certain
dependability properties. In terms of dependability, it makes
sense to refer to a system as reliable, available, secure, safe,
and survivable, or some combination, using the appropriate
definition(s). Describing a system as fault tolerant is really a
statement about the system’s design, not its dependability.

Survivability in respect of IT systems is a relatively new
research area and the definition of survivability is still being
debated. Two of the five definitions of survivability in Table I
mention "essential services", and three of them mention the
"degree of degraded or different” service to be provided by
the survivable system, so these could represent points of
agreement for a unified survivability definition. However,
definition three mentions that full services will be recovered,
whereas the other definitions only mention mission
fulfillment, not full service recovery.

Security attacks are a major concern for IT systems. In
some discussions survivability is viewed as synonymous with
secure operation. A survivable application must be able to
survive some malicious attacks, so survivability must involve
security. There are at least two aspects of survivability:
survival by protection and survival by adaptation. Security
mechanisms like access control and encryption attempt to
ensure survivability by protecting applications from harmful,
accidental or malicious changes in the environment. Survival
by adaptation typically involves monitoring and changing the
QoS available to applications.

The maturity of the survivable architectures is insufficient
for practical utilization in a system architect’s work, but they
will help to understand and solve the problem of survivable
systems. Furthermore, there is a remarkable lack of suitable

and mature methods, models and frameworks for practical
use.

REFERENCES
[1] J. C. Knight and K. J. Sullivan, “On the Definition of Survivability”,

University of Virginia, Department of Computer Science, Technical
Report CS-TR-33-00, 2000.

[2] M. S. Deutsch and R. R. Willis, “Software Quality Engineering: A Total
Technical and Management Approach”, Englewood Cliffs, NJ: Prentice-
Hall, 1988.

[3] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson, T. Longstaff and
N. R. Mead, “Survivable Network Systems: An Emerging Discipline”,
Technical Report CMU/SEI-97-TR-013, Software Engineering Institute,
Carnegie Mellon University, 1997.

[4] The Information Survivability Workshops of CERT Coordination
Center, Software Engineering Institute, Carnegie Mellon University.
Available at: http://www.cert.org/research/isw.html, 13.02.2004.

[5] R. C. Linger and A. P. Moore, “Foundations for Survivable System
Development: Service Traces, Intrusion Traces and Evaluation Models”,
Technical Report, CMU/SEI-2001-TR-029, Software Engineering
Institute, Carnegie Mellon University, 2001. Available at: http://www.
cert.org/archive/pdf/01tr029.pdf, 13.02.2004.

[6] K. Sullivan, J. Knight, X. Du and S. Geist, “Information Survivability
Control Systems”, Proceedings of the 21st International Conference on
Software Engineering, Los Angeles, California, pp. 184-192, 1999.

[7] M. C. Elder, “Fault Tolerance in Critical Information Systems”,
Dissertation, Faculty of the School of Engineering and Applied Science,
University of Virginia, 2001.

[8] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson, T. A. Longstaff
and N. R. Mead, “An Approach to Survivable Systems”, Technical
Report, CERT Coordination Center, Software Engineering Institute,
Carnegie Mellon University, 1999.

[9] I. Byon, “Survivability of the U.S. Electric Power Industry”, Master's
Thesis, Carnegie Mellon University, Information Networking Institute,
2000.

[10] J. Caldera, “Survivability Requirements for the U.S. Health Care
Industry”, Master's Thesis, Carnegie Mellon University, Information
Networking Institute, 2000.

[11] R. J. Ellison, D. A. Fisher, R., C. Linger, H. F. Lipson, T. A. Longstaff
and N. R. Mead “Survivability: Protecting Your Critical Systems”,
CERT Coordination Center Software Engineering Institute, IEEE
Internet Computing, pp. 55-63, 1999.

[12] R. J. Ellison, L.C. Linger, T. Longstaff, and N. R. Mead “Survivable
Network System Analysis: A Case Study”, IEEE Software, Vol. 16,
Issue: 4, pp. 70-77, 1999.

[13] J. Knight, D. Heimbigner, A. L. Wolf, A. Carzaniga, J. Hill, P. Devanbu
and M. Gertz, “The Willow Architecture: Comprehensive Survivability
for Large-Scale Distributed Applications”, Technical Report CU-CS-
926-01, Department of Computer Science, University of Colorado,
Boulder, Colorado, 2001.

[14] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson and S., J.
Carriere, “The Architecture Tradeoff Analysis Method”, Proceedings of
the IEEE International Conference on Engineering of Complex
Computer Systems, IEEE Computer Society, 1998.

[15] WWW-pages of CERT Coordination Center, Software Engineering
Institute, Carnegie Mellon University. Available at: http://www.cert.org/
easel/, 13.02.2004.

[16] A. M. Christie, “Network Survivability Analysis Using Easel”,
Technical Report, CMU/SEI-2002-TR-039, ESC-TR-2002-039,
Software Engineering Institute, Carnegie Mellon University, 2002.

[17] P. P. Pal, J. P. Loyall, R. E. Schantz, J. A. Zinky and F. Webber, “Open
implementation toolkit for building survivable applications”, DARPA
Information Survivability Conference and Exposition, Proceedings,
Volume: 2, pp. 197 – 210, 2000.

[18] J. C. Knight, E. A. Strunk and K. J. Sullivan, “Towards a Rigorous
Definition of Information System Survivability”, DARPA Information
Survivability Conference and Exposition, Washington DC, 2003.

[19] M. A. Hiltunen, R. D. Schlichting, C.A. Ugarte and G. T. Wong,
“Survivability through Customization and Adaptability: The Cactus

Approach”, DARPA Information Survivability Conference and
Exposition, pp. 294-307, 2000.

[20] J. C. Knight, K. J. Sullivan, M. C. Elder and C. Wang, “Survivability
Architectures: Issues and Approaches”, DARPA Information
Survivability Conference and Exposition, January 2000.

[21] D. Tipper, T. Dahlberg and H. Shin, “Providing Fault Tolerance in
Wireless Access Networks”, IEEE Communications Magazine, Vol. 40
Issue: 1, pp. 58-64, 2002.

[22] P. G. Neumann, “Practical Architectures for Survivable Systems and
Networks”, Technical Report supported by the U.S. Army Research
Laboratory (ARL), Computer Science Laboratory, SRI International,
2000.

[23] N. R. Mead, R. J. Ellison, R. C. Linger, T. Longstaff and J. McHugh,
“Survivable Network Analysis Method”, Technical Report, CMU/SEI-
2000-TR-013, ESC-2000-TR-013, Software Engineering Institute,
Carnegie Mellon University, 2000.

[24] B. Ravindran, “Engineering Dynamic Real-Time Distributed Systems:
Architecture, System Description Language, and Middleware”, IEEE
Transactions on Software Engineering, Vol. 28 Issue: 1, pp. 30-56,
2002.

[25] A. Barnes, A. Hollway and P. G. Neumann, “Survivable Computer-
Communication Systems: The Problem and Working Group
Recommendations”, Technical report VAL-CE-TR-92-22 (revision 1),
U.S. Army Research Laboratory, AMSRL-SL-E, White Sands Missile
Range, NM 88002-5513, 1993.

[26] R. Kazman, G. Abowd, L. Bass and P. Clements, “Scenario-Based
Analysis of Software Architecture”, IEEE Software, Vol. 13, Issue: 6,
pp. 47-55, 1996.

[27] M. Klein, T. Ralya, B. Pollak, R. Obenza and H. M. Gonzales “A
Practitioner’s Handbook for Real-Time Analysis”, Boston, MA, Kluwer
Academic, 1993.

[28] B. Boehm, “A Spiral Model of Software Development and
Enhancement”, ACM Software Eng. Notes 11, 4, pp. 22-42, 1986.

[29] M. Matinlassi, E. Niemelä and L. Dobrica, “Quality-driven architecture
design and quality analysis method. A revolutionary initiation approach
to product line architecture”, VTT Electronics, Espoo, VTT
Publications: 456, 2002. ISBN 951-38-5967-3, 951-38-5968-1

[30] IEEE Standard 1061- 1998, “Standard for a Software Quality Metrics
Methodology”, New York: The Institute of Electrical and Electronics
Engineers, 1998.

[31] ISO/IEC 2001 - International Organization for Standardization and
International Electrotechnical Commission. “Software engineering -
Product quality - Part 1: Quality model”. ISO/IEC 9126-1:2001(E)

[32] A. Avizienis, J.-C. Laprie and B. Randell, “Fundamental Concepts of
Dependability”, Technical report CS-TR-739, at University of
Newcastle, 2001.

[33] A. D. Keromytis, J. Parekh, P. N. Gross, G. Kaiser, V. Misra, J. Nieh, D.
Rubenstein and S. Stolfo, “A Holistic Approach to Service
Survivability”, Technical Report CUCS-021-03, Department of
Computer Science, Columbia University, 2003.

[34] P. Thompson, “Web services – beyond HTTP tunneling”. In W3C
Workshop on Web Services, 2001.

[35] D. Moore, G. M. Voelker and S. Savage, “Inferring internet Denial-of-
Service activity”. In Proceedings of the 10th Usenix Security
Symposium, pp. 9-22, 2001.

[36] D. Newman, J. Snyder and R. Thayer, “Crying wolf: False alarms hide
attacks”, Network World, June 2002. Available at: http://www.
nwfusion.com/techinsider/2002/0624security1.html. 13.02.2004

[37] “Microsoft Security Tool Kit: Installing and Securing a New Windows
2000 System”. Microsoft TechNet. Available at: http://www.microsoft.
com/technet/security/tools/tools/w2knew.asp, 13.02.2004

[38] “RedHat 9 Security Advisories”. Available at: https://rhn.redhat.com/
errata/rh9-errata-security.html, 13.02.2004

[39] A. D. Keromytis, V. Misra and D. Rubenstein, “SOS: Secure Overlay
Services”. In Proceedings of ACM SIGCOMM, Pp. 61-72, 2002.

[40] S. Osman, D. Subhraveti, G. Su and J. Nieh, “The design and
implementation of Zap: A system for migrating computing
environments”. In Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation (OSDI), pp. 361–376, 2002.

[41] S. Sidiroglou and A. D. Keromytis, “A Network Worm Vaccine
Architecture”. In Proceedings of the IEEE Workshop on Enterprise
Technologies: Infrastructure for Collaborative Enterprises (WET-ICE),
Workshop on Enterprise Security, 2003.

[42] M. V. Mahoney and P. K. Chan, “Learning non-stationary models of
normal network traffic for detecting novel attacks”. In Proceedings of
the eighth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 376–385, ACM Press, 2002.

[43] D. L. Cook, W. G. Morein, A. D. Keromytis, V. Misra and D.
Rubenstein, “WebSOS: Protecting Web Servers from DDoS Attacks”. In
Proceedings of the IEEE International Conference on Networks (ICON),
2003.

[44] S. Hershkop, R. Ferster, L. H. Bui, K. Wang, and S. J. Stolfo., “Host-
based anomaly detection by wrapping file system accesses”, Technical
report, Columbia University, Department of Computer Science, 2003.

[45] P. Pal, M. Atighetchi, F. Webber, R. Schantz and C. Jones, “Reflections
on Evaluating survivability: The APOD Experiments”, The 2nd IEEE
International Symposium on Network Computing and Applications
(NCA-03), 2003.

[46] P. Pal, F. Webber, J. Zinky, R. Shapiro and J. Megquire, “Using QDL to
specify QoS aware distributed (QuO) application configuration”, IEEE
Int'l Symp. Object-Oriented Real-Time Distributed Comp., 2000.

[47] D. Sames, B. Matt, B. Niebuhr, G. Tally, B. Whitmore and D. Bakken,
“Developing a Heterogeneous Intrusion Tolerant CORBA System”,
International Conference on Dependable Systems and Networks
(DSN'02), 2002.

[48] D. Bakken, “Middleware”, Chapter in Encyclopedia of Distributed
Computing, Urban, J., Dasgupta, P., eds., Kluwer Academic Publishers,
2001.

[49] “The Common Object Request Broker: Architecture and specification”,
OMG, Revision 2.5, 2001.

[50] J. C. Knight, K. J. Sullivan, M. C. Elder and C. Wang, “Survivability
architectures: issues and approaches”, DARPA Information
Survivability Conference and Exposition, Proceedings, Volume: 2, pp.
157 -171, 2000.

[51] R. Browne, J. Valente and S. Hariri, “An advanced middleware
architecture for secure and survivable mobile C4I systems”, Military
Communications Conference Proceedings, MILCOM 1999, IEEE,
Volume: 1, pp. 506 -513, 1999.

[52] R. de Lemos, C. Gacek and A. Romanovsky, (Eds.), “Architecting
Dependable Systems”, Series: Lecture Notes in Computer Science, Vol.
2677, XII, 309 p., 2003, ISBN: 3-540-40727-8.

[53] “Federal Standard 1037C”, U.S. Department of Commerce, National
Telecommunications and Information Administration, Institute for
Telecommunications Services, 1996. Available at: http://www.its.
bldrdoc.gov/fs-1037/dir-001/_0065.htm, 09.03.2004.

