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Introduction 
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The Bowing Phenomenon 

 Fuel assembly bowing has been observed in PWR since the mid-90s 

 Deformations in C-, S-, and W-shape have been observed 

 Bowing caused by 

• Irradiation creep 

• Mechanical forces (hold down springs, interaction with neighboring fuel 
assemblies) 

• Thermal-hydraulic forces 

 Mitigation achieved by use of stiffer structure materials and appropriate reshuffling 

 

Fuel assembly bowing changes inter-assembly gap and local fuel/moderator ratio  

impact on power of fuel pins of the first and second row 

 

The power changes in the edge pin rows cannot be detected by the in-core detectors, 
therefore  

 Calculations by operators necessary to confirm safety margins under bowing 
conditions 

 Start of a research project at GRS in 2016 



Mini core selection from a Pre-KONVOI cycle 

5 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

G  U  U G U U  G      P 

  G U U  G U  U U  G U  U G   O 

U  U  U  G U G G G U U U  U  U  N 

U U U G G G  G G  G G U U U   M 

G U U G  G G U U U G G G  U U G L 

U G U G G G U G U G G G U G U K 

U U U G U U G U G U U G U U U J 

G U G  G U G U G U G U G G  U G H 

U U U G U U G U G U U G U U U G 

U G U G G G U G U G G G U G U F 

G U G G  G G U U U G G G  G U G E 

U U U G G G  G G  G G U U U D 

U  U  U  U U G G G U U U  U  U  C 

U U U  G U  U U  U U  U U B 

G  U  U U U U  G  A 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.33 0.50 0.32 0.36 0.32 0.51 0.34 P 

0.34 0.81 0.96 0.84 1.02 0.89 1.01 0.86 0.97 0.81 0.33 O 

0.35 1.04 1.28 0.93 1.31 1.03 1.25 1.01 1.32 0.95 1.28 1.03 0.34 N 

0.84 1.30 1.07 1.35 1.19 1.33 1.15 1.33 1.19 1.35 1.06 1.28 0.82 M 

0.36 1.03 0.98 1.37 1.24 1.36 1.00 1.38 0.99 1.35 1.22 1.34 0.94 0.98 0.35 L 

0.59 0.93 1.38 1.22 1.38 1.12 1.11 1.10 1.10 1.10 1.34 1.17 1.31 0.87 0.55 K 

0.48 1.12 1.04 1.36 1.01 1.12 1.39 1.29 1.38 1.09 0.98 1.30 0.96 1.06 0.46 J 

0.37 0.96 1.29 1.18 1.41 1.12 1.31 1.28 1.29 1.09 1.36 1.14 1.24 0.92 0.36 H 

0.48 1.11 1.04 1.36 1.03 1.13 1.41 1.30 1.39 1.10 1.00 1.33 1.02 1.08 0.47 G 

0.57 0.90 1.36 1.21 1.39 1.14 1.14 1.11 1.11 1.11 1.35 1.19 1.34 0.91 0.57 F 

0.35 1.00 0.96 1.37 1.25 1.38 1.01 1.39 1.00 1.35 1.22 1.34 0.94 0.99 0.35 E 

0.83 1.30 1.09 1.37 1.21 1.34 1.16 1.33 1.18 1.33 1.06 1.27 0.81 D 

0.35 1.05 1.30 0.97 1.35 1.02 1.26 1.03 1.31 0.93 1.26 1.02 0.33 C 

0.35 0.83 1.00 0.89 1.04 0.90 1.02 0.84 0.94 0.80 0.34 B 

0.34 0.52 0.33 0.38 0.32 0.48 0.27 A 

U: UOX fuel assembly  
G: UO2-Gd2O3 fuel assembly 

■ fresh 
■ once burnt 

■ twice burnt 
■ thrice burnt 

Core Layout Assembly Powers @BOC 

FA power 
(GRS core simulator KMACS) 



Scenarios under examination 
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5 6 7 8 9 

U U G U G J 

U G U G U H 

U U G U G G 

G G U G U F 

G G U U U E 

5 6 7 8 9 

26.3 16.3 0.0 12.4 0.0 J 

0.0 17.4 12.3 15.1 12.4 H 

25.7 16.3 0.0 12.4 0.0 G 

0.0 17.3 15.3 17.5 16.2 F 

16.6 0.0 26.4 0.0 26.3 E 

5 6 7 8 9 

26.6 16.6 0.4 12.8 0.4 J 

0.4 17.8 12.7 15.5 12.8 H 

26.0 16.6 0.4 12.8 0.4 G 

0.4 17.6 15.6 17.8 16.6 F 

17.0 0.4 26.7 0.4 26.6 E 

0 EFPD (BOC) 7 EFPD 

Burnup in the mini-core [MWd/kgHM]: 

Scenario: Fresh BOC (no Xe) 7 EFPD (Xe equilibrium) 

Boron concentration [ppm] 500.0 1576.5 1250.0 

Moderator density [kg/m³] 730.62 724.833 724.833 

Moderator temperature [K] 571.15 572.71 572.71 

Fuel temperature [K] 950.0 779.89 779.89 

Fresh fuel –  0.0 MWd/kgHM 



Scenarios under examination (2) 
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 Nominal case: 

 Additional inter-assembly gap: 

 5 mm 

 10 mm 

 15 mm 

 Calculations with Serpent Monte Carlo 

5 6 

U U 

U G 

U U 

G G 

G G 

7 8 9 

G U G J 

U G U H 

G U G G 

U G U F 

U U U E 

Additional inter –
assembly gap in 
x direction 

Nominal  
inter-assembly gap 

Nominal case Maximum gap in x direction 

Additional 
gap 



Mini-core Model – Boundary Conditions (1/3) 
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 Vacuum BDC: 

• Fuel mass conservation while fuel 

assemblies are shifted into the radial 

reflector 

• Problem: Significant depression of the 

neutron flux at the core periphery 

⇒ unrealistic power distribution 

⇒ unrealistic impact of the fuel assembly        

bowing in the centre of the core 

 

 

MC-Model with fresh fuel: 

Thermal neutron flux 



Mini-core Model – Boundary Conditions (2/3) 
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 Reflective BDC: 

• Uniform neutron flux distribution 

• Important for comparing power distributions:  

Fuel is shifted outside the model 

• Problem: Significant depression of the neutron flux 

at the corner with Gd fuel assemblies 

 

4xG 

4xG 4xG 

4xG 

Thermal neutron flux 



Mini-core Model – Boundary Conditions (3/3) 
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 Mini-core model truncated: 

• Only half of the outer assemblies is modelled 

• Reflective BDC 

• More uniform neutron flux distribution 

compared to the fully modelled 5x5 lattice 

• Important for comparing power distributions:  

Fuel is shifted outside the model 

Thermal neutron flux Half fuel assembly 



Mini-core Model - Calculation Details 
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Monte Carlo calculation details: 

 1 000 000 Neutronhistories per cycle 

 1 000 active cycles, 60 inactive cycles 

 12.32 h run time with 10 MPI Jobs 

 Stat. error ~0.2 % on pin power 

 

 

Power normalisation: 

 To ensure comparability, the total power of the bowed models is normalised by the 

total power of the nominal model 



Pin power increase: ratio gap power / nominal power 
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Scencario BOC 
Additional gap: 5 mm 

Left side Right side 

2nd pin Row 1st pin row 1st pin row 2nd pin row 
Average increase 1.03 1.08 1.09 1.04 

Maximum 1.11 1.12 

Additional gap: 10 mm 
Left side Right side 

2nd pin Row 1st pin row 1st pin row 2nd pin row 

Average increase 1.06 1.15 1.17 1.08 
Maximum 1.20 1.22 

Additional gap: 15 mm 

Left side Right side 

2nd pin Row 1st pin row 1st pin row 2nd pin row 

Average increase 1.07 1.19 1.21 1.09 

Maximum 1.25 1.29 

Monte Carlo: relative statistical uncertainty of the increase 
approx. 0.3%. 

Left 
Side 

Right 
Side 

1st pin row 2nd pin row 



Pin power increase as a function of additional water gap  
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Additional inter-assembly gap [mm] 

Maximum and average pin power increase 
pins in the 1st row,  right side 
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Pin power increase as a function of burnup 

Fresh fuel @ 15mm additional gap 
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Average values in 1st and 2nd row, respectively 

Left 
Side 

Right 
Side 

1st pin row 2nd pin row 



Model Extensions for the GRS Core Simulator KMACS 
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 3d core simulations with TH feedback: Use of a core simulator is required 

 

 KMACS is a classical 2-step core simulator 

1. XS generation for single fuel assemblies in infinite lattice 

Interfaces to codes SCALE-NEWT, HELIOS and Serpent (provisional) 

2. Full-core calculation by a 2-group diffusion code including core thermal 

hydraulics (GRS Codes QUABOX/CUBBOX-ATHLET) 

 

 Modifications required to consider fuel assembly bowing 

1. Parametrization of XS according to inter-assembly gap 

2. Modification of the nodal power calculation for the nodal diffusion code 

(grid is no longer quadratic) 



Testing gap-parametrized XS in KMACS: Single additional gap in  

2D BEAVRS reactor model 
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 Insertion of the maximum possible inter-assembly gap in row 10, between positions 

F and E 

 Gap width:1.6208 cm 

 All other inter-assembly gaps in row 10 close 

 

cm 



Testing gap-parametrized XS in KMACS: 

2D assembly powers changes Serpent vs. KMACS 
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Assembly power changes in % of the average assembly power 

KMACS Serpent 
[%] [%] 



Conclusions and Outlook 
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 Fuel assembly bow causes a change in inter-assembly gaps 

 This results in  

• change of the local fuel-to-moderator ratio and  

• changes in pin powers  

 Serpent Monte-Carlo Calculations yield a pin power increase of up to 34% for an 
additional 15mm flat gap between Pre-KONVOI UO2/UO2-Gd2O3 assemblies 

 In approximately 400 full power days this increase burns out to 10% 

 

 Gap-parametrized XS have been tested in GRS core simulator KMACS: 

• XS-behavior with varying inter-assembly gap similar for different  
UO2 and UO2-Gd2O3 assemblies 

• Qualitative agreement between Serpent and KMACS for assembly power changes in 
a 2D BEAVRS model with additional inter-assembly gap 

 

 Next steps:  

• Extensions to 3D and more complex inter-assembly gap patterns 

• Consideration of MOX assemblies 

 

 

 

Conclusions and Outlook 

Supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety 
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SPERT III Experiments 
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 Performed in the 1960‘s 

 Analysis of reactor dynamic behaviour at rod ejection 

events 

 PWR-like design 

 Fuel: UO2 with 4.8% enr. in U-235 

 60 fuel assemblies 

• 48 FAs with 5 x 5 fuel pins 

• 8 movable FAs: lower half 4 x 4 fuel pins, 

upper half absorber (stainless steel + 1.35% B-10) 

• 4 FAs with 4 x 4 fuel pins, controlled by transient 

rod  

 Transients driven by ejection of a 

centrally located transient rod 

 Experiments differ by inserted reactivity, 

reactor period and peak power 

 Conditions: Cold Startup, Hot Startup, Hot Standby, 

Operating Power 

 



Models - Serpent and KMACS 
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 Models were set up for the CZP state: 294 K, 0.99803 g/cm^3 

• Serpent Reference model with detailed modelling of flux suppressors  

(cross-shaped absorber plates made from stainless steel + 1.35% B-10) 

• Serpent Simplified model, flux suppressors replaced with absorber can 

 for better comparability with the KMACS model 

• KMACS model with few group constants from infinite lattice models 

 

 

 

Top view of reference model Side view  of reference model 

Detail view of the 
flux suppressors 



Results - Integral Quantities 
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 Multiplication factors – Fuel Followers and Transient Rod withdrawn: 

 

 

 

 

 

 Critical Position of the Fuel Followers (from bottom of active core): 

 

 

 

 

 

 Kinetic data from the reference model – FF and TR withdrawn: 

 

Serpent 
Reference 

Serpent 
Simplified 

KMACS 

Multiplication factor 1.11724(6) 1.11804(6) 1.11184 

Serpent 
Reference 

Experiment 
 

Serpent 
Simplified 

KMACS 

FF Crit. Position [cm] 38.248 37.084 29.406 29.136 

Beta 2.355E-04 1.254E-03 1.226E-03 2.804E-03 1.239E-03 5.168E-04  Total: 0.00727574 

Lambda 1.335E-02 3.261E-02 1.211E-01 3.056E-01 8.607E-01 2.892E+00   



Radial Power Distribution at All Rods Out State 
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Rel. deviation between KMACS and Serpent 
Axial distribution of normalised 

power density 



CR Worth – Fuel Followers 
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CR Worth – Transient Rod 
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Conclusions and Outlook 

Supported by the German Federal Ministry for Economic Affairs and Energy 26 

 Reference Serpent model and simplified Serpent model were built for CZP state 

 Model built for the GRS core simulator KMACS with few-group constants from 

infinite-lattice calculations 

 Preliminary results obtained: 

• Multiplication factors of the Serpent models and of the KMACS model at All Rods 

Out state  reasonable agreement 

• Critical position of the fuel followers: 

 About 1 cm deviation between the reference Serpent model and the 

experimental value 

 Good agreement between the simplified Serpent model and the KMACS model 

• Fuel followers worth and transient rod worth with the various models 

 

Next steps: 

 In-depth analyses of the static models for different reactor conditions 

 Transient calculations 

 

 


