

Application of Serpent for Fuel Assembly Bowing

A. Aures, F. Bostelmann, R. Kilger, K. Pletz, K. Velkov, M. Zilly

and SPERT III Static Calculations

A. Aures, A. Pautz*, W. Zwermann

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Boltzmannstr. 14, 85748 Garching, Germany

> *École polytechnique fédérale de Lausanne 1015 Lausanne, Switzerland

> > alexander.aures@grs.de

Serpent User Group Meeting, Helsinki, Finland, 29.05. – 01.06.2018

Contents

- Fuel Assembly Bowing in PWR
 - Introduction
 - Monte-Carlo Calculations for 2D Mini-cores with additional Inter-Assembly Gap
 - Model Extensions for the GRS Core Simulator KMACS
 - 2D Full Core Calculations Monte-Carlo vs. KMACS
 - Conclusions and Outlook
- SPERT III Static Calculations
 - Introduction
 - Models
 - Results
 - Conclusions and Outlook

Contents

- Fuel Assembly Bowing in PWR
 - Introduction
 - Monte-Carlo Calculations for 2D Mini-cores with additional Inter-Assembly Gap
 - Model Extensions for the GRS Core Simulator KMACS
 - 2D Full Core Calculations Monte-Carlo vs. KMACS
 - Conclusions and Outlook
- SPERT III Static Calculations
 - Introduction
 - Models
 - Results
 - Conclusions and Outlook

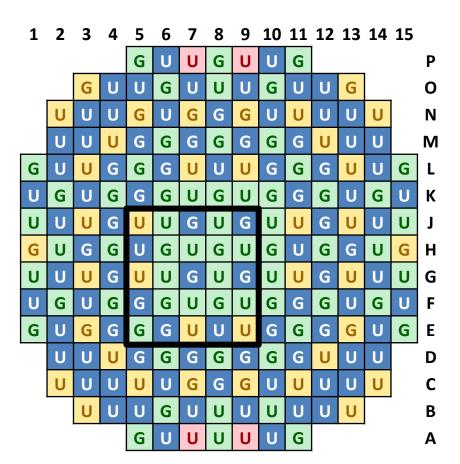
Introduction

The Bowing Phenomenon

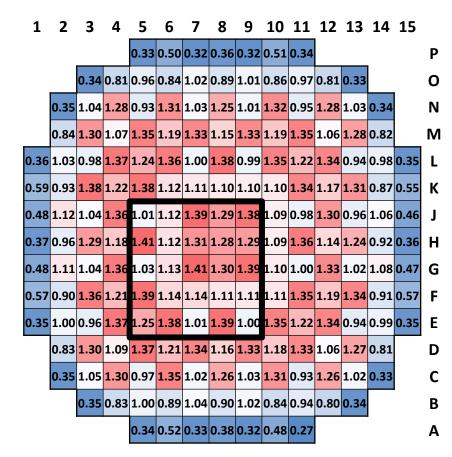
- Fuel assembly bowing has been observed in PWR since the mid-90s
- Deformations in C-, S-, and W-shape have been observed
- Bowing caused by
 - Irradiation creep
 - Mechanical forces (hold down springs, interaction with neighboring fuel assemblies)
 - Thermal-hydraulic forces
- Mitigation achieved by use of stiffer structure materials and appropriate reshuffling

Fuel assembly bowing changes inter-assembly gap and local fuel/moderator ratio

→impact on power of fuel pins of the first and second row


The power changes in the edge pin rows cannot be detected by the in-core detectors, therefore

- Calculations by operators necessary to confirm safety margins under bowing conditions
- Start of a research project at GRS in 2016



Mini core selection from a Pre-KONVOI cycle

Core Layout

Assembly Powers @BOC

fresh

once burnt

- twice burnt
- thrice burnt
- **U**: UOX fuel assembly
- **G**: UO2-Gd2O3 fuel assembly

FA power

(GRS core simulator KMACS)

Scenarios under examination

Burnup in the mini-core [MWd/kgHM]:

Fresh fuel – 0.0 MWd/kgHM 0 EFPD (BOC)

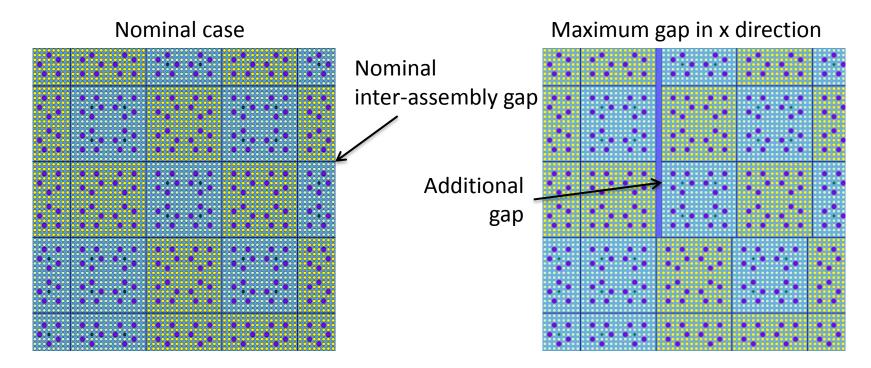
5	6	7	8	9	
٦	U	G	٦	G	J
C	G	U	G	C	н
C	C	G	U	G	G
G	G	U	G	U	F
G	G	U	U	U	E

5	6	7	8	9	
26.3	16.3	0.0	12.4	0.0	J
0.0	17.4	12.3	15.1	12.4	Н
25.7	16.3	0.0	12.4	0.0	G
0.0	17.3	15.3	17.5	16.2	F
16.6	0.0	26.4	0.0	26.3	Е

7 EFPD

5	6	7	8	9	
26.6	16.6	0.4	12.8	0.4	J
0.4	17.8	12.7	15.5	12.8	Н
26.0	16.6	0.4	12.8	0.4	G
0.4	17.6	15.6	17.8	16.6	F
17.0	0.4	26.7	0.4	26.6	E

Scenario:	Fresh	BOC (no Xe)	7 EFPD (Xe equilibrium)
Boron concentration [ppm]	500.0	1576.5	1250.0
Moderator density [kg/m³]	730.62	724.833	724.833
Moderator temperature [K]	571.15	572.71	572.71
Fuel temperature [K]	950.0	779.89	779.89

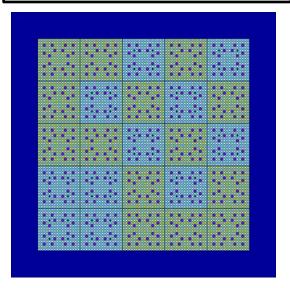


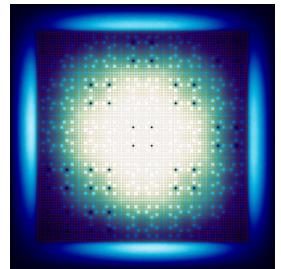
Scenarios under examination (2)

- Nominal case:
- Additional inter-assembly gap:
 - 5 mm
 - 10 mm
 - 15 mm
- Calculations with Serpent Monte Carlo

5	6	7	8	9		
U	J	G	U	G	J	
U	G	U	G	U	Н	
U	U	G	U	G	G	
G	G	U	G	U	F	
G	G	U	U	U	E	

Additional inter – assembly gap in x direction

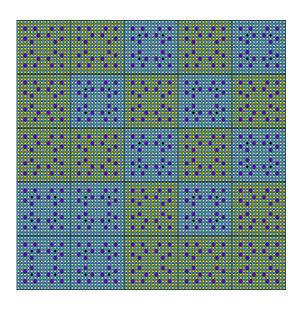


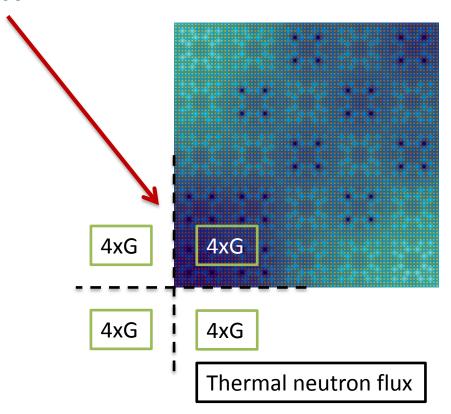

Mini-core Model – Boundary Conditions (1/3)

Vacuum BDC:

- Fuel mass conservation while fuel assemblies are shifted into the radial reflector
- Problem: Significant depression of the neutron flux at the core periphery
 - ⇒ unrealistic power distribution
 - ⇒ unrealistic impact of the fuel assembly bowing in the centre of the core

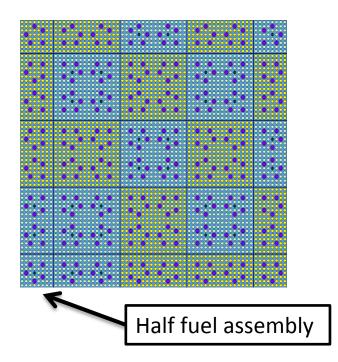
MC-Model with fresh fuel:

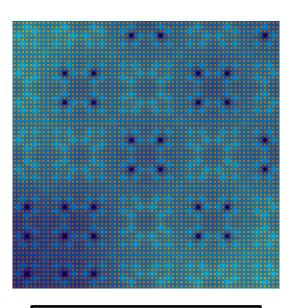



Thermal neutron flux

Mini-core Model – Boundary Conditions (2/3)

- Reflective BDC:
 - Uniform neutron flux distribution
 - Important for comparing power distributions:
 Fuel is shifted outside the model
 - Problem: Significant depression of the neutron flux at the corner with Gd fuel assemblies





Mini-core Model – Boundary Conditions (3/3)

- Mini-core model truncated:
 - Only half of the outer assemblies is modelled
 - Reflective BDC
 - More uniform neutron flux distribution compared to the fully modelled 5x5 lattice
 - Important for comparing power distributions:
 Fuel is shifted outside the model

Thermal neutron flux

Mini-core Model - Calculation Details

Monte Carlo calculation details:

- 1 000 000 Neutronhistories per cycle
- 1 000 active cycles, 60 inactive cycles
- 12.32 h run time with 10 MPI Jobs
- Stat. error ~0.2 % on pin power

Power normalisation:

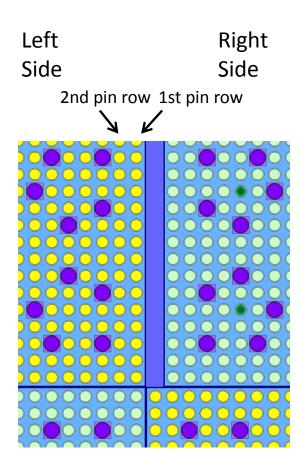
 To ensure comparability, the total power of the bowed models is normalised by the total power of the nominal model

Pin power increase: ratio gap power / nominal power

				•	_			
•	ce	n	മ	rı	$\boldsymbol{\cap}$	к	()	
J	しし	,,,	La		v	ט	V	·

radicional Sapi — 5 illiii	Add	litio	nal	gap:	5	mm
----------------------------	-----	-------	-----	------	---	----

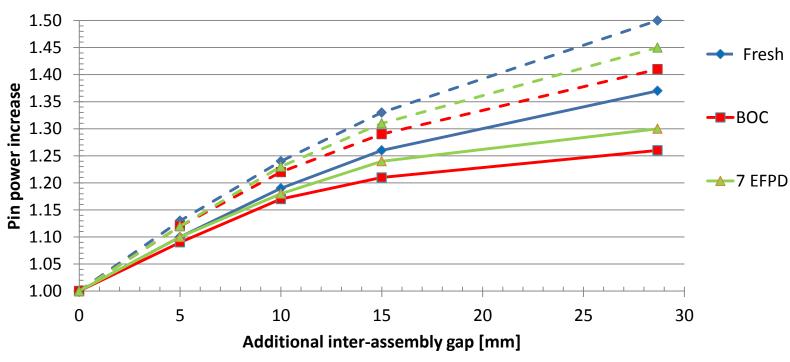
	Left s	side	Right si	de
	2nd pin Row	1st pin row	1st pin row	2nd pin row
Average increase	1.03	1.08	1.09	1.04
Maximum		1.11	1.12	


Additional gap: 10 mm

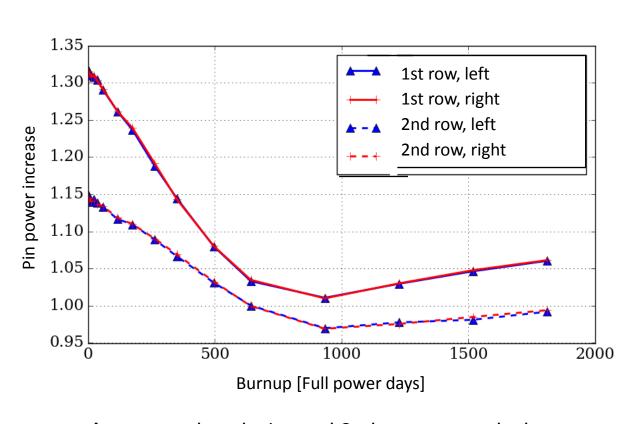
.	Left side		Right si	de
	2nd pin Row	1st pin row	1st pin row	2nd pin row
Average increase	1.06	1.15	1.17	1.08
Maximum		1.20	1.22	

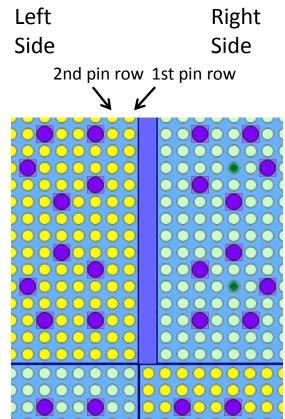
Additional gap: 15 mm

. 131 311 41 511 311 91 P.				
	Left side		Right si	de
	2nd pin Row	1st pin row	1st pin row	2nd pin row
Average increase	1.07	1.19	1.21	1.09
Maximum		1.25	1.29	


Monte Carlo: relative statistical uncertainty of the increase approx. 0.3%.

Pin power increase as a function of additional water gap


Maximum and average pin power increase pins in the 1st row, right side

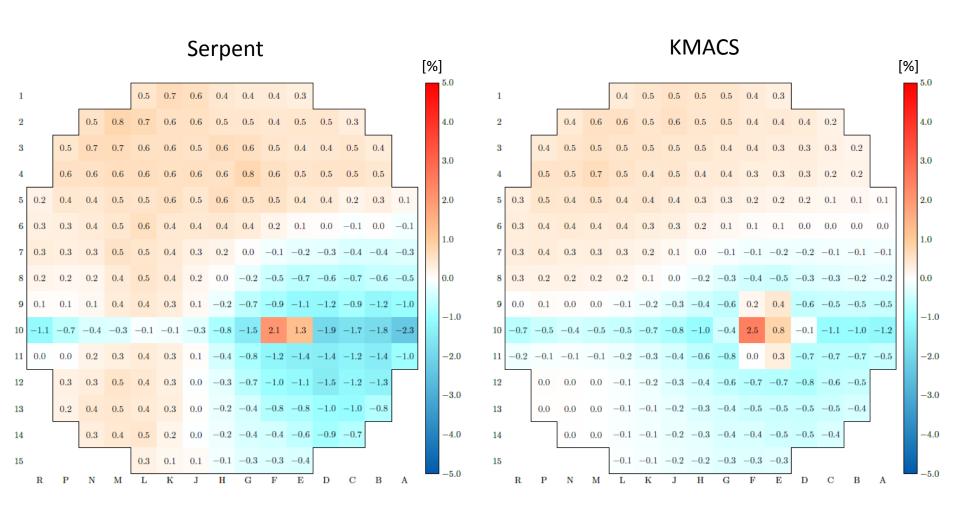


- - maximum pin power increase
- average pin power increase

Pin power increase as a function of burnup Fresh fuel @ 15mm additional gap

Average values in 1st and 2nd row, respectively

Model Extensions for the GRS Core Simulator KMACS


- 3d core simulations with TH feedback: Use of a core simulator is required
- KMACS is a classical 2-step core simulator
 - XS generation for single fuel assemblies in infinite lattice Interfaces to codes SCALE-NEWT, HELIOS and Serpent (provisional)
 - Full-core calculation by a 2-group diffusion code including core thermal hydraulics (GRS Codes QUABOX/CUBBOX-ATHLET)
- Modifications required to consider fuel assembly bowing
 - 1. Parametrization of XS according to inter-assembly gap
 - 2. Modification of the nodal power calculation for the nodal diffusion code (grid is no longer quadratic)

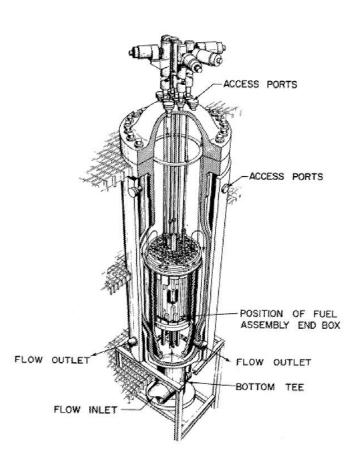
Testing gap-parametrized XS in KMACS: Single additional gap in 2D BEAVRS reactor model $R_{\perp}P_{\perp}N_{\perp}M_{\perp}L_{\perp}K_{\perp}J_{\perp}H_{\perp}G_{\perp}F_{\perp}E_{\perp}D_{\perp}C_{\perp}B_{\perp}A$ • Insertion of the maximum possible inter-assembly F and E Gap width:1.6208 cm 16 15 All other inter-assembly gaps in row 10 close 16 16 12 16 12 16 13 14 Baffle Neutron Shield Core Barrel Pressure Vessel \mathbf{H} \mathbf{R} 10 1.6208 cm

Testing gap-parametrized XS in KMACS: 2D assembly powers changes Serpent vs. KMACS

Assembly power changes in % of the average assembly power

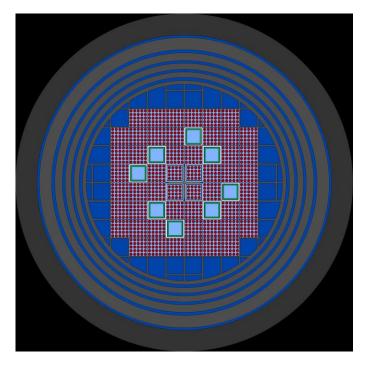
Conclusions and Outlook

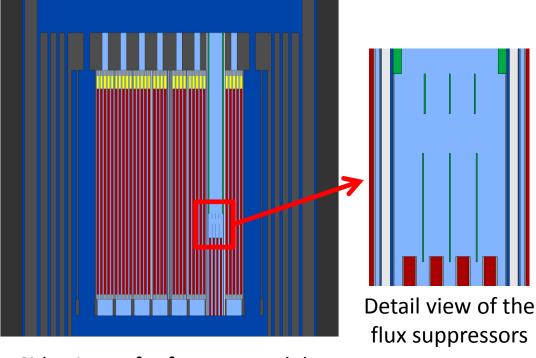
- Fuel assembly bow causes a change in inter-assembly gaps
- This results in
 - change of the local fuel-to-moderator ratio and
 - changes in pin powers
- Serpent Monte-Carlo Calculations yield a pin power increase of up to 34% for an additional 15mm flat gap between Pre-KONVOI UO₂/UO₂-Gd₂O₃ assemblies
- In approximately 400 full power days this increase burns out to 10%
- Gap-parametrized XS have been tested in GRS core simulator KMACS:
 - XS-behavior with varying inter-assembly gap similar for different UO₂ and UO₂-Gd₂O₃ assemblies
 - Qualitative agreement between Serpent and KMACS for assembly power changes in a 2D BEAVRS model with additional inter-assembly gap
- Next steps:
 - Extensions to 3D and more complex inter-assembly gap patterns
 - Consideration of MOX assemblies


Contents

- Fuel Assembly Bowing in PWR
 - Introduction
 - Monte-Carlo Calculations for 2D Mini-cores with additional Inter-Assembly Gap
 - Model Extensions for the GRS Core Simulator KMACS
 - 2D Full Core Calculations Monte-Carlo vs. KMACS
 - Conclusions and Outlook
- SPERT III Static Calculations
 - Introduction
 - Models
 - Results
 - Conclusions and Outlook

SPERT III Experiments


- Performed in the 1960's
- Analysis of reactor dynamic behaviour at rod ejection events
- PWR-like design
- Fuel: UO₂ with 4.8% enr. in U-235
- 60 fuel assemblies
 - 48 FAs with 5 x 5 fuel pins
 - 8 movable FAs: lower half 4 x 4 fuel pins, upper half absorber (stainless steel + 1.35% B-10)
 - 4 FAs with 4 x 4 fuel pins, controlled by transient rod
- Transients driven by ejection of a centrally located transient rod
- Experiments differ by inserted reactivity, reactor period and peak power
- Conditions: Cold Startup, Hot Startup, Hot Standby, Operating Power



Models - Serpent and KMACS

- Models were set up for the CZP state: 294 K, 0.99803 g/cm^3
 - Serpent Reference model with detailed modelling of flux suppressors (cross-shaped absorber plates made from stainless steel + 1.35% B-10)
 - Serpent Simplified model, flux suppressors replaced with absorber can
 for better comparability with the KMACS model
 - KMACS model with few group constants from infinite lattice models

Top view of reference model

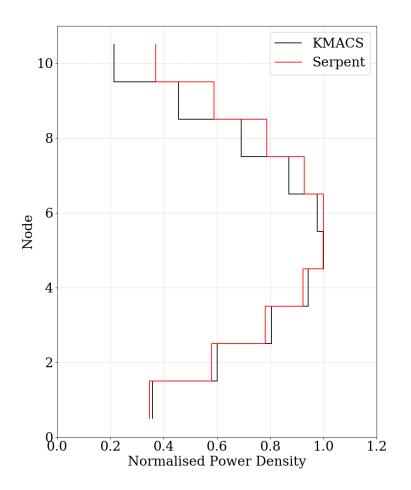
Side view of reference model

Results - Integral Quantities

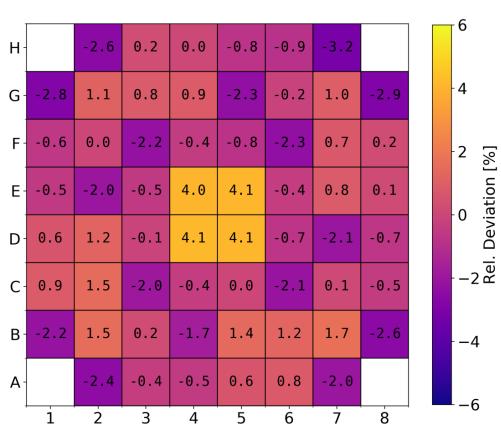
• Multiplication factors – Fuel Followers and Transient Rod withdrawn:

	Serpent Reference	Serpent Simplified	KMACS
Multiplication factor	1.11724(6)	1.11804(6)	1.11184

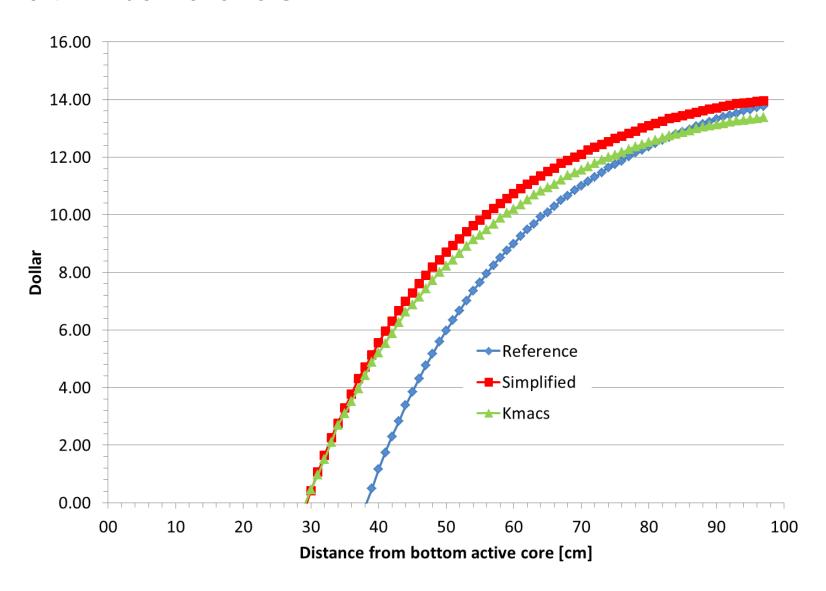
Critical Position of the Fuel Followers (from bottom of active core):


	Serpent Reference	Experiment	Serpent Simplified	KMACS
FF Crit. Position [cm]	38.248	37.084	29.406	29.136

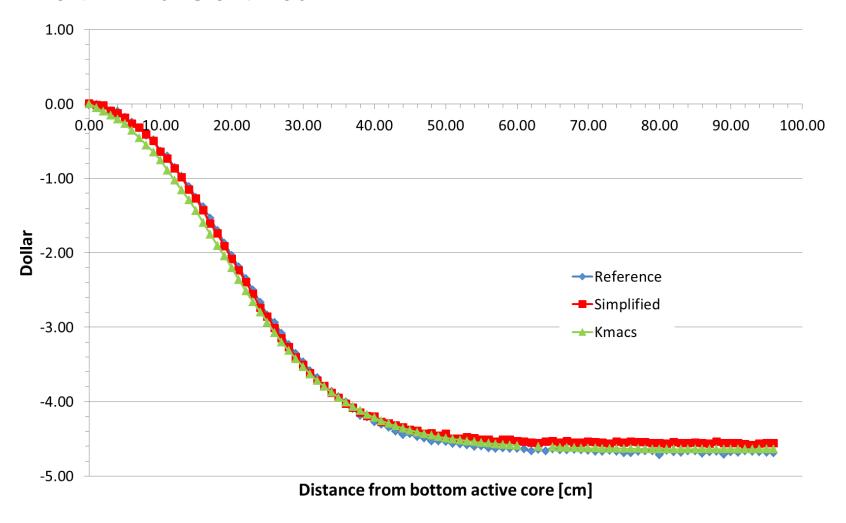
• Kinetic data from the reference model – FF and TR withdrawn:


Beta	2.355E-04	1.254E-03	1.226E-03	2.804E-03	1.239E-03 5.168E-04 Total: 0.00727574
Lambda	1.335E-02	3.261E-02	1.211E-01	3.056E-01	8.607E-01 2.892E+00

Radial Power Distribution at All Rods Out State


Axial distribution of normalised power density

Rel. deviation between KMACS and Serpent



CR Worth – Fuel Followers

CR Worth – Transient Rod

Conclusions and Outlook

- Reference Serpent model and simplified Serpent model were built for CZP state
- Model built for the GRS core simulator KMACS with few-group constants from infinite-lattice calculations
- Preliminary results obtained:
 - Multiplication factors of the Serpent models and of the KMACS model at All Rods
 Out state → reasonable agreement
 - Critical position of the fuel followers:
 - About 1 cm deviation between the reference Serpent model and the experimental value
 - Good agreement between the simplified Serpent model and the KMACS model
 - Fuel followers worth and transient rod worth with the various models

Next steps:

- In-depth analyses of the static models for different reactor conditions
- Transient calculations